Maths Calculation Policy

Updated January 2023
Reviewed January 2024

Glossary of Terms

+ Addition: sum (ONLY for addition), total, parts of wholes, plus, add, altogether, more than
- Subtraction: take away, less than, the difference, subtract, minus, fewer, decrease
\times Multiplication:double times, multiplied by, the product of, groups of, lots of
\div Division: share, group, divide, divided by, half
= Equals: 'is equal to' 'is the same as', 'is equivalent to'
Integer: any whole number
Th H T O: Thousands Hundreds Tens Ones (not 'units')
Commutativity: in simple terms, the calculation can be done in any order. Specific to addition and multiplication (addend+addend=sum and factor x factor=product).
Inverse: pairs of mathematical manipulations in which one operation undoes the action of the other. For example, addition and subtraction, multiplication and division.

```
minuend - subtrahend \(=\) difference \(\quad\) dividend \(\div\) divisor \(=\) quotient
        minuend
- subtrahend
    difference
    divisor \(\xlongequal[\text { dividend }]{\frac{\text { quotient }}{\text { diven }}}\)
addend + addend \(=\) sum
    addend
+ addend
    sum
```

dividend \div divisor $=$ quotient
divisor $\frac{\text { quotient }}{\text { dividend }}$
factor \times factor $=$ product
factor
x factor
product

Addition-

Key language which should be used: sum (use ONLY for addition), total, parts and wholes, plus, add, altogether, more than

Concrete	Pictorial	Abstract
Combining two parts to make a whole (e.g. blocks, eggs, shells, teddy bears etc)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4 ? What is the sum of 4 and 2? What's the total of 4 and 2? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g $6+\square=11$ and $6+5=5+\square \quad 6+5=\square+4$

Use of place value counters to add HTO + TO, HTO + HTO etc. once the children have had practice with this, they should be able to apply it to larger numbers and the abstract

If the children are completing a word problem, draw a bar model to represent what it's asking them to do

$?$	
243	368

Fluency variation, different ways to ask children to solve 21+34:

	Sam saved $£ 21$ one week and £34 another. How much did he save in total? 21+34=55. Prove it! (This is reasoning but the children need to be fluent in representing this)	$\begin{gathered} 21 \\ +34 \\ 21+34= \\ --=21+34 \end{gathered}$ What's the sum of twenty one and thirty four?	Always use missing digit problems too:	
			Tens	Ones
			$\bigcirc \bigcirc$	\bigcirc
21			$\bigcirc \bigcirc$?
			?	4

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (use various objects too) rather than crossing outchildren will physically remove the objects $4-3=1$	Children draw the concrete resources they are using and cross out. Use of the bar model:	$\begin{aligned} & \text { 4- } 3= \\ & =4-3 \\ & \end{aligned}$
Counting back (using number lines or number tracks) 6-2	Children to represent what they see pictorially e.g. 6 $?$ 2	

| Column method (using base 10 and having |
| :--- | :--- | :--- | :--- |
| to exchange) |
| $45-26$ |

| Represent the base 10 pictorially |
| :--- | :--- |
| 1) Start by partitioning 45 |
| 2) Exchange one ten for ten more |
| ones |

3) Subtract the ones, then the tens.

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. XX XX XX XX XX XX Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

Fluency variation, different ways to ask children to solve 6×23 :

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$ 6 split or divided into 2 s . How many groups of 2?		Abstract number line
2d $\div 1 \mathrm{~d}$ with remainders $13 \div 4=3$ remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g:	$13 \div 4-3$ remainder 1 Children to count their times tables facts in their heads

Use of lollipop sticks to form wholes \square \square \square \square Use of Cuisenaire rods and rulers (using repeated subtraction)		
2d divided by 1d using base 10 (no remainders) SHARING $48 \div 4=12$ Start with the tens.	Children to represent the base 10 and sharing pictorially.	$48 \div 4$ 4 tens $\div 4=1$ ten 8 ones $\div 4=2$ ones $10+2=12$
Sharing using place value counters. $42 \div 3=14$		$\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$
Make 42. Use 10 Ones to make the fourth Ten. Now we can share out the Tens and Ones between 3.		

Long Division

Concrete	Pictorial	Abstract
	Children to represent the counters, pictorially and record the subtractions beneath. Abstract (ii) Abstract procedural method used once understanding is established:	

